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IMITATION IN ARTIFICIAL SYSTEMS

► (1) Robotic systems that are able to imitate via vision

- Difficult

- Mainly problem of pattern recognition

► (2) Artificial systems as a model of human imitation learning► (2) Artificial systems as a model of human imitation learning
- Difficult when biological realism is required

- Often related to infant motor development

- Main tools: Learning with connectionist models

► (3) Robotic Behavior via human guided robot imitation

- Easier (to some extent)

- Teleoperation, motion capture. etc.
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- Human visuo-motor learning



INFANT LEARNING: BECOMING AN IMITATOR 

• Self observation (assumption: infants can observe their actions)
– Agent produces action (A)
– Agent sees consequence of the action (V)

A t i t A d V– Agent associates A and V

• Social (reinforcement) learning (assumption: caregivers cheer infant imitation)
Agent observes action (V)– Agent observes action (V)

– Agent generates an action (A)
– If social reward is collected, 

agent associates A and Vagent associates A and V 

• Social (supervised) learning  (assumption: caregivers are natural imitators)
– Agent shows action (A)g ( )
– Agent sees teacher’s imitation (V)
– Agent associates A and V
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IMITATION BY SELF-OBSERVATION =
HEBBIAN ASSOCIATION?HEBBIAN ASSOCIATION?

Vision
Somatosensory

Motor Code

Others (Vestibular, 
Auditory etc.) 

Hebb (1949):   When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some growth process or 
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p y p y p g g p
metabolic change takes place in one or both cells such that A's efficiency, 
as one of the cells firing B, is increased. 



TEST ASSOCIATIVE LEARNING 
HYPOTHESIS WITH GIFU HANDHYPOTHESIS WITH GIFU HAND

Vision

Motor Code (joint angles)

Need an appropriate neural architecture to implement 
th i ti
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the associative memory. 
Simplest alternative → HOPFIELD network



GIFU HAND-HHOP-VISION 
INTEGRATIONINTEGRATION

* Input video: 320x240 30fps color Input video:  320x240 30fps color

* Preprocessing: 
Gaussian smoothing → cropping → thresholding → IsolatedGaussian smoothing → cropping → thresholding → Isolated 
point elimination

* Input to HHOP: Pixels from the preprocessed video + joint* Input to HHOP: Pixels from the preprocessed video + joint 
configuration of the Hand (binary)

Low level Hand 
Controller

High Level 
Coordinator

Video Capture

Controller
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Preprocessing HHOP



AN ASSOCAITIVE MEMORY UTILIZING
HIGHER ORDER UNITS (HHOP)HIGHER ORDER UNITS (HHOP)

Si: output of unit i ( 1 or +1)Si: output of unit i (-1 or +1)
wijk: connection strength between units 
i and synapse (product) formed by 
units j and k

Unit i

units j and k : the jth bit of pattern μ
N : number of units

Unit j

wijkUnit k

Net input h

The update rule:

Net input hi

The weights (batch):

~synaptic 
multiplication
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g ( )
Hebbian update
on the products



POSTURES USED FOR LEARNING
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SIMPLE HAND POSTURE IMITATION

Learning: Human Hand + Gifu Motor Output (social supervised)

GifuHand shows action (A)
T h (H ) i it t
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Teacher (Human) imitates 
GifuHand sees teacher’s imitation (V) and associates A and V



SIMPLE HAND POSTURE IMITATION
Video 
Input

HHOP memory 
retreival

Input

HHOP Input 
resolutionresolution

Learning: Gifu Hand + Gifu Motor Output (Self Observation)

GifuHand produces action (A)
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GifuHand produces action (A)
GifuHand sees the consequence of action (V)
GifuHand associates A and V



HOW GOOD IS HUMAN IMITATION? 
Can we really effortlessly imitate an uncommon hand posture?Can we really effortlessly imitate an uncommon  hand posture?
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Some notes

Self observation may allow fast but simple y p
imitation

The quality and the complexity of the imitationThe quality and the complexity of the imitation 
capacity depends on the visual preprocessing

Applicability is limited: face and whole body 
i it ti i t iblimitation is not possible 

•
Social Learning appears to be the key for 

delicate imitation capability which may require
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delicate imitation capability, which may require 
slow visual analysis 
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Motivation
Robot programming requires experts, and lot of p g g q p ,

expert work-hours
Can we expect non-experts teach robotsCan we expect non experts teach robots

– teaching by demonstration 
– robotic imitation 
– robot coaching 

These approaches commonly aim at making this pp y g
task a natural and easy task for the human 
teacher
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Our proposalp p

What we propose is ‘not to be that niceWhat we propose is not to be that nice 
to the human teacher’
– Tight connection between the robot 

and human
– May require extensive training on the 

human sidehuman side

→ Build an robot interface as in teleoperation→ Build an robot interface as in teleoperation
→ Train a human to perform the target task with the robot
→ Use the robot trajectory generated by the human to 
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j y g y
synthesize an autonomous controller



Why should our proposal work?y p p

– The brain’s ability to learn novel control tasks 
– The robot can simply be considered as another tool (e.g. 

b di d i i i h ti k )snowboarding, driving, using chopsticks)
– The flexibility of the body schema; extensive training on the 

human side should modify the body schema so that the robot y y
can be controlled naturally (c.f. when you hold chopsticks, 
they become part of your body so that it can be controlled 
effortlessly)effortlessly)

– c.f. Experiments with monkeys shows that representation of 
hands are expanded instantaneously as soon as a tool is 

bb d th t b tili d t i l t th (I iki tgrabbed that can be utilized to manipulate the space (Iriki et 
al. 1996; Obayashi et al. 2001)
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Ball swapping taskpp g

B
A

B
A

Ball swapping is a suitable task for testing our 
proposal since:

- It is complex: it is not possible to determine how 
difficult the task will be with the Gifu Hand
Not straightforward to manually program the task
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-Not straightforward to manually program the task 
(learning is possible but requires dimensionality 
reduction etc.)



Human Control of the Robot

Vi lE O t t

Human hand 
movement VisualEyez Output

30Hz

MarkerMarker

VizualEyez data

movement
Data Capture

Inverse Kinematics

Input 
Driven

Marker 
Positions

Marker 
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Gifu Hand actuation



Human Control of the Robot
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Gifu Hand actuation



Playing with single ball: 
b ildi t i iti ?building motor primitives ?
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Finally success…Finally  success…

Erhan Oztop, JST - ATR 
Humanoids 2008  
Imitation and Coaching in 
Humanoid Robots 

21/31



Improving Performancep g
B. Smoothing & Linear interpolationA. Original finger joint trajectories

C. Kicks superimposed on to (B) D. Speed-up, then apply (B) and (C) p p, pp y ( ) ( )

Index finger

Ring finger
Middle finger
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Ring finger
Little finger



Swapping speed up x 2.2pp g p p
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Stable Reaching with a Small 
Humanoid Robot
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Human Control of Robot

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.
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Motion & Stability Obtained by Human
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Statically Stable Trajectory Generationy j y
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Autonomous Trajectory Tracking

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.
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Stability During Robot Execution

Human controlled (slow) Human controlled (20sec.)

Human controlled (10sec.) Human controlled (5sec.)( ) ( )
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Rethinking the stable reaching task: 
Two Tasks for the HumanTwo Tasks for the Human

The task is to make the robot reach without falling overThe task is to make the robot reach without falling over

But the subject must keep self balance too !

Human motion 
stability

Robot motion 
stabilitystability  stability  
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Current Work: Improving the paradigm

Increasing the motion range of the human

Richer feedback to the human

Human motion 
stability

Robot motion 
stabilitystability  stability  
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Improving the Paradigm:
3DOF Articulated Platform3DOF Articulated Platform (slow)
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Improving the Paradigm:
3DOF Articulated Platform3DOF Articulated Platform (fast)
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Improving the Paradigm:
3DOF Articulated Platform3DOF Articulated Platform

Erhan Oztop, JST - ATR 
Humanoids 2008  
Imitation and Coaching in 
Humanoid Robots 

34/31



CONCLUSION

Results: Synthesizing robot behavior by humanResults: Synthesizing robot behavior by human 
training is a viable approach

Implication: A new employment area may emerge 
in the coming decades: robot trainers

Future Work: incorporating robot adaptation during 
human learningu a ea g

Future Work: Dynamic task on a humanoid robot
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Future Work: Dynamic task on a humanoid robot


